Integral X Cos X Dx
Mathmom
Yes, you need to use integration by parts twice.
∫ x² cos(x) dx
u = x² . . . . . . . dv = cos(x) dx
du = 2x dx . . . v = sin(x)
∫ u dv = u*v – ∫ v du
∫ x² cos(x) dx = x² sin(x) – ∫ 2x sin(x) dx
∫ x² cos(x) dx = x² sin(x) – 2 ∫ x sin(x) dx
Integrate by parts again:
u = x . . . . . dv = sin(x) dx
du = dx . . . v = -cos(x)
∫ x² cos(x) dx = x² sin(x) – 2 (-x cos(x) – ∫ – cos(x) dx)
∫ x² cos(x) dx = x² sin(x) + 2x cos(x) – 2 ∫ cos(x) dx
∫ x² cos(x) dx = x² sin(x) + 2x cos(x) – 2 sin(x) + C
6 votes
Thanks 6
Source: https://quizsilo.com/find-the-integral-of-gt-x2-cosxdx.html
Posted by: bljar.com